• Title of article

    Multiple View Geometry of General Algebraic Curves

  • Author/Authors

    Kaminski، J.Y. نويسنده , , Shashua، Amnon نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    -194
  • From page
    195
  • To page
    0
  • Abstract
    We introduce a number of new results in the context of multi-view geometry from general algebraic curves. We start with the recovery of camera geometry from matching curves. We first show how one can compute, without any knowledge on the camera, the homography induced by a single planar curve. Then we continue with the derivation of the extended Kruppaʹʹs equations which are responsible for describing the epipolar constraint of two projections of a general algebraic curve. As part of the derivation of those constraints we address the issue of dimension analysis and as a result establish the minimal number of algebraic curves required for a solution of the epipolar geometry as a function of their degree and genus. We then establish new results on the reconstruction of general algebraic curves from multiple views. We address three different representations of curves: (i) the regular point representation in which we show that the reconstruction from two views of a curve of degree d admits two solutions, one of degree d and the other of degree d(d – 1). Moreover using this representation, we address the problem of homography recovery for planar curves, (ii) dual space representation (tangents) for which we derive a lower bound for the number of views necessary for reconstruction as a function of the curve degree and genus, and (iii) a new representation (to computer vision) based on the set of lines meeting the curve which does not require any curve fitting in image space, for which we also derive lower bounds for the number of views necessary for reconstruction as a function of curve degree alone.
  • Keywords
    structure from motion , epipolar geometry , Krupps equations , multiple-view geometry , 3D reconstruction , algebraic curves
  • Journal title
    INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Serial Year
    2004
  • Journal title
    INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Record number

    32018