• Title of article

    Knowledge-based segmentation of SAR data with learned priors

  • Author/Authors

    haker Zahra، نويسنده , , S.، نويسنده , , Sapiro، نويسنده , , G.، نويسنده , , Tannenbaum، نويسنده , , A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    3
  • From page
    299
  • To page
    301
  • Abstract
    An approach for the segmentation of still and video synthetic aperture radar (SAR) images is described in this note. A priori knowledge about the objects present in the image, e.g., target, shadow, and background terrain, is introduced via Bayesʹ rule. Posterior probabilities obtained in this way are then anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used to learn the prior distributions in the succeeding frame. We show with examples from public data sets that this method provides an efficient and fast technique for addressing the segmentation of SAR data.
  • Keywords
    Anisotropic Diffusion , Bayes rule , knowledge , learning , segmentation , Synthetic Aperture Radar (SAR).
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Serial Year
    2000
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Record number

    396352