Title of article :
Zero-Valent Iron-Assisted Autotrophic Denitrification
Author/Authors :
Bose، Purnendu نويسنده , , Biswas، Susham نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2005
Pages :
-1211
From page :
1212
To page :
0
Abstract :
Porous reactive barriers containing metallic iron and hydrogenotrophic denitrifying microorganisms may potentially be suitable for in-situ remediation of nitrate-contaminated groundwater resources. The main objective of the research described here was to determine the type and concentration of metallic iron to be used in such reactive barriers so that ammonia formation through metallic iron-assisted abiotic nitrate reduction was minimized, while a reasonable rate of biological denitrification, sustained by hydrogen produced through metallic iron corrosion, was maintained. Initial experiments included the demonstration of autotrophic denitrification supported by externally supplied hydrogen, either from a gas cylinder or generated through anaerobic corrosion of metallic iron. Next, the effect of iron type on abiotic nitrate reduction was studied, and among those types of iron tested, steel wool, with its relatively low surface-area-toweight ratio, was identified as the material that exhibited the least propensity to abiotically reduce nitrate. Further, long-term experiments were carried out in batch reactors to determine the effect of steel wool surface area on the extent of denitrification and ammonia production. Finally, experiments carried out in up-flow column reactors containing sand and varying quantities of steel wool demonstrated biological denitrification occurring in such systems. Based on the results of the final set of experiments, it appeared that to minimize ammonia production, the steelwool concentration up-flow columns must be even below the lowest value-0.5 g steel wool added to 125  cm^3 of sand—used during this study. To counter any detrimental effect of lowered steel wool concentration on the extent of hydrogenotrophic denitrification, increase of the retention time in the columns to values higher than 13 days (the maximum value investigated in this study) may be necessary.
Keywords :
Integral equation , Measure space
Journal title :
JOURNAL OF ENVIRONMENTAL ENGINEERING
Serial Year :
2005
Journal title :
JOURNAL OF ENVIRONMENTAL ENGINEERING
Record number :
41347
Link To Document :
بازگشت