• Title of article

    Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritimum L.

  • Author/Authors

    Abdelbasset Lakhdar، نويسنده , , Chokri Hafsi، نويسنده , , Mokded Rabhi، نويسنده , , Ahmed Debez، نويسنده , , Francesco Montemurro، نويسنده , , Chedly Abdelly، نويسنده , , Naceur Jedidi، نويسنده , , Zeineb Ouerghi، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    8
  • From page
    7160
  • To page
    7167
  • Abstract
    The efficiency of composted municipal solid wastes (MSW) to reduce the adverse effects of salinity was investigated in Hordeum maritimum under greenhouse conditions. Plants were cultivated in pots filled with soil added with 0 and 40 t ha−1 of MSW compost, and irrigated twice a week with tap water at two salinities (0 and 4 g l−1 NaCl). Harvests were achieved at 70 (shoots) and 130 (shoots and roots) days after sowing. At each cutting, dry weight (DW), NPK nutrition, chlorophyll, leaf protein content, Rubisco (ribulose-bisphosphate carboxylase/oxygenase) capacity, and contents of potential toxic elements were determined. Results showed that compost supply increased significantly the biomass production of non salt-treated plants (+80%). This was associated with higher N and P uptake in both shoots (+61% and +80%, respectively) and roots (+48% and +25%, respectively), while lesser impact was observed for K+. In addition, chlorophyll and protein contents as well as Rubisco capacity were significantly improved by the organic amendment. MSW compost mitigated the deleterious effect of salt stress on the plant growth, partly due to improved chlorophyll and protein contents and Rubisco capacity (−15%, −27% and −14%, respectively, in combined treatment, against −45%, −84% and −25%, respectively, in salt-stressed plants without compost addition), which presumably favoured photosynthesis and alleviated salt affect on biomass production by 21%. In addition, plants grown on amended soil showed a general improvement in their heavy metals contents Cu2+, Pb2+, Cd2+, and Zn2+ (in combined treatment: 190%, 53%, 168% and 174% in shoots and 183%, 42%, 42% and 114% in roots, respectively) but remained lower than phytotoxic values. Taken together, these findings suggest that municipal waste compost may be safely applied to salt-affected soils without adverse effects on plant physiology.
  • Keywords
    municipal solid waste compost , Heavy metals , Rubisco , salt , soluble proteins
  • Journal title
    Bioresource Technology
  • Serial Year
    2008
  • Journal title
    Bioresource Technology
  • Record number

    413803