• Title of article

    Adaptive, template moderated, spatially varying statistical classification

  • Author/Authors

    S.K Warfield، نويسنده , , Michael Kaus، نويسنده , , Ferenc A. Jolesz، نويسنده , , Ron Kikinis، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    13
  • From page
    43
  • To page
    55
  • Abstract
    A novel image segmentation algorithm was developed to allow the automatic segmentation of both normal and abnormal anatomy from medical images. The new algorithm is a form of spatially varying statistical classification, in which an explicit anatomical template is used to moderate the segmentation obtained by statistical classification. The algorithm consists of an iterated sequence of spatially varying classification and nonlinear registration, which forms an adaptive, template moderated (ATM), spatially varying statistical classification (SVC). Classification methods and nonlinear registration methods are often complementary, both in the tasks where they succeed and in the tasks where they fail. By integrating these approaches the new algorithm avoids many of the disadvantages of each approach alone while exploiting the combination. The ATM SVC algorithm was applied to several segmentation problems, involving different image contrast mechanisms and different locations in the body. Segmentation and validation experiments were carried out for problems involving the quantification of normal anatomy (MRI of brains of neonates) and pathology of various types (MRI of patients with multiple sclerosis, MRI of patients with brain tumors, MRI of patients with damaged knee cartilage). In each case, the ATM SVC algorithm provided a better segmentation than statistical classification or elastic matching alone.
  • Keywords
    brain , Multiple sclerosis , elastic matching , Nearest neighbor classification , Knee cartilage , Neonate , segmentation , tumor , Nonlinear registration
  • Journal title
    Medical Image Analysis
  • Serial Year
    2000
  • Journal title
    Medical Image Analysis
  • Record number

    449703