• Title of article

    Center of mass velocity-position predictions for balance control

  • Author/Authors

    Yi-Chung Pai، نويسنده , , James Patton، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1997
  • Pages
    8
  • From page
    347
  • To page
    354
  • Abstract
    The purposes of this analysis were to predict the feasible movements during which balance can be maintained, based on environmental (contact force), anatomical (foot geometry), and physiological (muscle strength) constraints, and to identify the role of each constraint in limiting movement. An inverted pendulum model with a foot segment was used with an optimization algorithm to determine the set of feasible center of mass (CM) velocity-position combinations for movement termination. The upper boundary of the resulting feasible region ran from a velocity of 1.1 s−1 (normalized to body height) at 2.4 foot lengths behind the heel, to 0.45 s−1 over the heel, to zero over the toe, and the lower boundary from a velocity of 0.9 s−1 at 2.7 foot lengths behind the heel, to zero over the heel. Forward falls would be initiated if states exceeded the upper boundary, and backward falls would be initiated if the states fell below the lower boundary. Under normal conditions, the constraint on the size of the base of support (BOS) determined the upper and lower boundaries of the feasible region. However, friction and strength did limit the feasible region when friction levels were less than 0.82, when dorsiflexion was reduced more than 51%, or when plantar flexion strength was reduced more than 35%. These findings expand the long-held concept that balance is based on CM position limits (i.e. the horizontal CM position has to be confined within the BOS to guarantee stable standing) to a concept based on CM velocity-position limits.
  • Keywords
    Movement constraints , Human stance , Predictedability , simulation model , optimization , Slipping , Movement termination , Initiation of fall
  • Journal title
    Journal of Biomechanics
  • Serial Year
    1997
  • Journal title
    Journal of Biomechanics
  • Record number

    450505