Title of article
A Galois theory of commutative rings
Author/Authors
David J. Winter، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2005
Pages
32
From page
380
To page
411
Abstract
Galois objects—Galois groups, rings, Lie rings, and birings —act on commutative rings A and satisfy Galois correspondence theorems which support Galois descent. This generalizes the Galois theory of fields to a Galois theory of commutative rings. In particular, the classical correspondence of Galois, the Jacobson–Bourbaki correspondence [N. Jacobson, Lectures in Abstract Algebra, vol. 3, Van Nostrand, 1964; D.J. Winter, The Jacobson descent theorem, Pacific J. Math. 104 (2) (1983) 495–496; D.J. Winter, The Structure of Fields, Springer-Verlag, 1974], the Jacobson differential correspondence [N. Jacobson, op. cit.; D.J. Winter, The Structure of Fields, op. cit.], the Galois birings correspondence of [D.J. Winter, The Structure of Fields, op. cit.], and corresponding theories of Galois descent [N. Jacobson, Forms of algebras, Yeshiva Sci. Confs. 7 (1966) 41–71; D.J. Winter, The Jacobson descent theorem, op. cit.; D.J. Winter, The Structure of Fields, op. cit.] generalize from fields to commutative rings. The Galois Lie rings correspondence Theorem 4.2 solves the simple restricted irreducible derivation rings Problem 8.4 in the finitely generated case.
Journal title
Journal of Algebra
Serial Year
2005
Journal title
Journal of Algebra
Record number
697185
Link To Document