Title of article :
Irreducible Quadratic Factors ofx(qn+1)/2+ax+bover q
Author/Authors :
Dennis R. Estes، نويسنده , , Tetsuro Kojima، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
10
From page :
204
To page :
213
Abstract :
Letf(x) =x(qn+1)/2+ax+b q[x] withb≠ 0,q=ptandpan odd prime. Ifnis even ora2+ 1 is a square in qthenf(x) does not have an irreducible quadratic factor in q[x]. Iff(x) has a monic irreducible quadratic factor in q[x] then it is unique and equal tox2+ 2(b/a)x+b2/(a2+ 1). A condition thatx2+ 2(b/a)x+b2/(a2+ 1) dividef(x) is expressed in terms of quadratic and biquadratic symbols which are evaluated fora= ±1, 0 and allq, ora= ±2, ±3 andq=p.
Journal title :
Finite Fields and Their Applications
Serial Year :
1996
Journal title :
Finite Fields and Their Applications
Record number :
700866
Link To Document :
بازگشت