• Title of article

    Local multiple imputation

  • Author/Authors

    Molenberghs، Geert نويسنده , , Aerts، Marc نويسنده , , Claeskens، Gerda نويسنده , , Hens، Niel نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2002
  • Pages
    -374
  • From page
    375
  • To page
    0
  • Abstract
    Dealing with missing data via parametric multiple imputation methods usually implies stating several strong assumptions both about the distribution of the data and about underlying regression relationships.If such parametric assumptions do not hold, the multiply imputed data are not appropriate and might produce inconsistent estimators and thus misleading results. In this paper, a fully nonparametric and a semiparametric imputation method are studied, both based on local resampling principles. It is shown that the final estimator, based on these local imputations, is consistent under fewer or no parametric assumptions. Asymptotic expressions for bias, variance and mean squared error are derived, showing the theoretical impact of the different smoothing parameters. Simulations illustrate the usefulness and applicability of the method.
  • Keywords
    Batch importance sampling , Generalised linear model , Markov chain Monte Carlo , Mixture model , Parallel processing , Particle filter , Metropolis–Hastings , importance sampling
  • Journal title
    Biometrika
  • Serial Year
    2002
  • Journal title
    Biometrika
  • Record number

    71810