Title of article :
Hopf structures on ambiskew polynomial rings
Author/Authors :
Jonas T. Hartwig، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
21
From page :
863
To page :
883
Abstract :
We derive necessary and sufficient conditions for an ambiskew polynomial ring to have a Hopf algebra structure of a certain type. This construction generalizes many known Hopf algebras, for example image, image and the enveloping algebra of the three-dimensional Heisenberg Lie algebra. In a torsion-free case we describe the finite-dimensional simple modules, in particular their dimensions, and prove a Clebsch–Gordan decomposition theorem for the tensor product of two simple modules. We construct a Casimir type operator and prove that any finite-dimensional weight module is semisimple.
Journal title :
Journal of Pure and Applied Algebra
Serial Year :
2008
Journal title :
Journal of Pure and Applied Algebra
Record number :
818901
Link To Document :
بازگشت