Title of article :
A multiplicity theorem for problems with the p-Laplacian
Author/Authors :
Evgenia H. Papageorgiou، نويسنده , , Nikolaos S. Papageorgiou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
15
From page :
63
To page :
77
Abstract :
We consider a nonlinear elliptic problem driven by the p-Laplacian, with a parameter λ ∈ R and a nonlinearity exhibiting a superlinear behavior both at zero and at infinity. We show that if the parameter λ is bigger than λ2 = the second eigenvalue of (− p,W 1,p 0 (Z)), then the problem has at least three nontrivial solutions. Our approach combines the method of upper–lower solutions with variational techniques involving the Second Deformation Theorem. The multiplicity result that we prove extends an earlier semilinear (i.e. p = 2) result due to Struwe [M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990]. © 2006 Elsevier Inc. All rights reserved.
Keywords :
Eigenvalues of thep-Laplacian , Second deformation theorem , Multiple nontrivial solutions , Superlinear nonlinearity , upper and lower solutions
Journal title :
Journal of Functional Analysis
Serial Year :
2007
Journal title :
Journal of Functional Analysis
Record number :
839333
Link To Document :
بازگشت