Title of article :
Pseudodifferential operator calculus for generalized Q-rank 1 locally symmetric spaces, I
Author/Authors :
Daniel Grieser، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
54
From page :
3748
To page :
3801
Abstract :
This paper is the first of two papers constructing a calculus of pseudodifferential operators suitable for doing analysis on Q-rank 1 locally symmetric spaces and Riemannian manifolds generalizing these. This generalization is the interior of a manifold with boundary, where the boundary has the structure of a tower of fibre bundles. The class of operators we consider on such a space includes those arising naturally from metrics which degenerate to various orders at the boundary, in directions given by the tower of fibrations. As well as Q-rank 1 locally symmetric spaces, examples include Ricci-flat metrics on the complement of a divisor in a smooth variety constructed by Tian and Yau. In this first part of the calculus construction, parametrices are found for “fully elliptic differential a-operators,” which are uniformly elliptic operators on these manifolds that satisfy an additional invertibility condition at infinity. In the second part we will consider operators that do not satisfy this condition. © 2009 Elsevier Inc. All rights reserved.
Keywords :
Pseudodifferential operators , Analysis on locally symmetric spaces , Analysis on singular spaces
Journal title :
Journal of Functional Analysis
Serial Year :
2009
Journal title :
Journal of Functional Analysis
Record number :
840041
Link To Document :
بازگشت