Title of article :
Sums of Laplace eigenvalues—rotationally symmetric maximizers in the plane
Author/Authors :
R.S. Laugesen، نويسنده , , B.A. Siudeja، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
29
From page :
1795
To page :
1823
Abstract :
The sum of the first n 1 eigenvalues of the Laplacian is shown to be maximal among triangles for the equilateral triangle, maximal among parallelograms for the square, and maximal among ellipses for the disk, provided the ratio (area)3/(moment of inertia) for the domain is fixed. This result holds for both Dirichlet and Neumann eigenvalues, and similar conclusions are derived for Robin boundary conditions and Schrödinger eigenvalues of potentials that grow at infinity. A key ingredient in the method is the tight frame property of the roots of unity. For general convex plane domains, the disk is conjectured to maximize sums of Neumann eigenvalues. © 2010 Elsevier Inc. All rights reserved.
Keywords :
Isoperimetric , Membrane , tight frame
Journal title :
Journal of Functional Analysis
Serial Year :
2011
Journal title :
Journal of Functional Analysis
Record number :
840395
Link To Document :
بازگشت