Title of article :
Coconvex Polynomial Approximation of Twice Differentiable Functions Original Research Article
Author/Authors :
K.A. Kopotun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
16
From page :
141
To page :
156
Abstract :
For a function f ∈ C2[−1, 1] with 1 ≤ r < ∞ inflection points and sufficiently large n we construct an algebraic polynomial pn of degree ≤ n satisfying f″(x) p″n(x) ≥ 0, x ∈ [−1, 1], and such that ∥ f(ν) − p(ν)n∥∞ ≤ Cνn−2 + νωφ(f″, n− 1), ν = 0, 1, 2, where Cν = Cν(r), ν = 0, 1, C2 = C2(r)/[formula] (α is the point of inflection nearest to ±1), and ωφ(f″, n− 1) denotes the Ditzian-Totik modulus of continuity of f″ in the uniform metric.
Journal title :
Journal of Approximation Theory
Serial Year :
1995
Journal title :
Journal of Approximation Theory
Record number :
851335
Link To Document :
بازگشت