Title of article :
Ground-state solutions for the electrostatic nonlinear Klein–Gordon–Maxwell system Original Research Article
Author/Authors :
Feizhi Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
4796
To page :
4803
Abstract :
In this paper, we study the nonlinear Klein–Gordon equation coupled with the Maxwell equation in the electrostatic case: equation(P) View the MathML source{−Δu+[m2−(eϕ+ω)2]u=f(u),in R3,Δϕ=e(eϕ+ω)u2,in R3, Turn MathJax on where m,e,ω>0m,e,ω>0. Benci and Fortunato (2002) [3] and D’Aprile and Mugnai (2004) [6], showed that, for any u∈H1(R3)u∈H1(R3), the second equation of problem (P) has a unique solution ϕu∈D1,2(R3)ϕu∈D1,2(R3), the map View the MathML sourceΛ:u∈H1(R3)↦ϕu∈D1,2(R3) is continuously differentiable, and ϕu∈[−ω/e,0]ϕu∈[−ω/e,0]. Furthermore, we prove that View the MathML sourcemax{−ωe−ϕu,ϕu}≤ψu≤0, Turn MathJax on where View the MathML sourceψu=Λ′(u)[u]/2. Then, we consider the ground-state solution of problem (P) with f(u)=|u|p−2u,2
Keywords :
Solitary waves , Electrostatic field , Klein–Gordon–Maxwell system , Nehari manifold
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863271
بازگشت