Title of article :
The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximal monotone Original Research Article
Author/Authors :
Liangjin Yao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
6144
To page :
6152
Abstract :
The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximal monotone operators provided that Rockafellar’s constraint qualification holds. In this paper, we prove the maximal monotonicity of A+BA+B provided that AA and BB are maximal monotone operators such that View the MathML sourcedomA∩intdomB≠∅, View the MathML sourceA+NdomB¯ is of type (FPV), and View the MathML sourcedomA∩domB¯⊆domB. The proof utilizes the Fitzpatrick function in an essential way.
Keywords :
convex function , Convex set , Duality mapping , Fitzpatrick function , Linear relation , monotone operator , Monotone operator of type (FPV) , Subdifferential operator , Constraint qualification , Maximal monotone operator
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863390
Link To Document :
بازگشت