Title of article :
Characterization of a high-dimensional interior crisis in a nonlinear reactive-diffusion equation
Author/Authors :
A. C. -L. Chian، نويسنده , , E. L. Rempel، نويسنده , , F. Christiansen، نويسنده , , E. E. N. Macau، نويسنده , , R. R. Rosa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
7
From page :
370
To page :
376
Abstract :
We report an investigation of interior crisis in extended spatiotemporal systems exemplified by the Kuramoto–Sivashinsky equation. We show that unstable periodic orbits and their associated invariant stable and unstable manifolds in the Poincaré hyperplane can effectively characterize the global bifurcation dynamics of high-dimensional systems. In particular, we introduce a new technique to characterize the high-dimensional homoclinic tangency responsible for an interior crisis using the stable manifolds of a chaotic saddle.
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2004
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
869598
Link To Document :
بازگشت