Title of article
Probing the arrangement of hyperplanes Original Research Article
Author/Authors
Yasukazu Aoki، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1995
Pages
25
From page
101
To page
125
Abstract
In this paper we investigate the combinatorial complexity of an algorithm to determine the geometry and the topology related to an arrangement of hyperplanes in multi-dimensional Euclidean space from the “probing” on the arrangement. The “probing” by a flat means the operation from which we can obtain the intersection of the flat and the arrangement. For a finite set H of hyperplanes in Ed, we obtain the worst-case number of fixed direction line probes and that of flat probes to determine a generic line of H and H itself. We also mention the bound for the computational complexity of these algorithms based on the efficient line probing algorithm which uses the dual transform to compute a generic line of H.
We also consider the problem to approximate arrangements by extending the point probing model, which have connections with computational learning theory such as learning a network of threshold functions, and introduce the vertical probing model and the level probing model. It is shown that the former is closely related to the finger probing for a polyhedron and that the latter depends on the dual graph of the arrangement.
The probing for an arrangement can be used to obtain the solution for a given system of algebraic equations by decomposing the μ-resultant into linear factors. It also has interesting applications in robotics such as a motion planning using an ultrasonic device that can detect the distances to obstacles along a specified direction.
Journal title
Discrete Applied Mathematics
Serial Year
1995
Journal title
Discrete Applied Mathematics
Record number
884154
Link To Document