Title of article :
Finding all essential terms of a characteristic maxpolynomial Original Research Article
Author/Authors :
Rainer E. Burkard، نويسنده , , Peter Butkovic، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
14
From page :
367
To page :
380
Abstract :
Let us denote a⊕b=max(a,b) and a⊗b=a+b for a,b∈R=R∪{−∞} and extend this pair of operations to matrices and vectors in the same way as in linear algebra. We present an O(n2(m+n log n)) algorithm for finding all essential terms of the max-algebraic characteristic polynomial of an n×n matrix over R with m finite elements. In the cases when all terms are essential, this algorithm also solves the following problem: Given an n×n matrix A and k∈{1,…,n}, find a k×k principal submatrix of A whose assignment problem value is maximum.
Keywords :
Max-algebra , Characteristic maxpolynomial , Assignment problem
Journal title :
Discrete Applied Mathematics
Serial Year :
2003
Journal title :
Discrete Applied Mathematics
Record number :
885659
Link To Document :
بازگشت