Title of article :
Nonconforming finite element methods for the simulation of waves in viscoelastic solids Original Research Article
Author/Authors :
Taeyoung Ha، نويسنده , , Juan E. Santos، نويسنده , , Dongwoo Sheen and Dmitry Shepelsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
24
From page :
5647
To page :
5670
Abstract :
The propagation of waves in two- and three-dimensional bounded viscoelastic media is described in the space–frequency domain, leading to a Helmholtz-type boundary value problem, which is noncoercive, non-Hermitian, and complex valued. First-order absorbing boundary conditions are derived and used to minimize spurious reflections from the artificial boundaries. The paper consists of two parts. In Part I we describe the global procedures for the approximate solution of the problem. Simplicial and rectangular nonconforming finite element methods are employed for the spatial discretization. Optimal error estimate in a broken energy and L2(Ω) norms are derived using a bootstrapping argument of Schatz. Also a hybridization of these procedures is analyzed. In Part II we define and analyze nonoverlapping domain decomposition iterative methods. Convergence results are derived and numerical experiments showing the potential applicability in seismology are presented.
Keywords :
Error estimate , Domain decomposition , Nonconforming finite element method , viscoelasticity
Journal title :
Computer Methods in Applied Mechanics and Engineering
Serial Year :
2002
Journal title :
Computer Methods in Applied Mechanics and Engineering
Record number :
892663
Link To Document :
بازگشت