• Title of article

    Cooking attenuates the ability of high-amylose meals to reduce plasma insulin concentrations in rats

  • Author/Authors

    Brown، Marc A. نويسنده , , Storlien، Leonard H. نويسنده , , Brown، Ian L. نويسنده , , Higgins، Janine A. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    -822
  • From page
    823
  • To page
    0
  • Abstract
    Postprandial glycaemic control is important in the prevention and therapy of type 2 diabetes and related diseases. Agents that may reduce postprandial glycaemia and/or insulinaemia, such as consumption of high-amylose foods, are considered beneficial; however, little is known about the dose-response relationship and the effects of cooking. The aim of the present study was to define the dose-response curve for postprandial glycaemic and insulinaemic excursions following meals of different amylose content and to compare the dose-response curves for meals containing cooked and uncooked starches. Following an overnight fast, rats ingested a test meal and blood was sampled over 2 h. The meal was given at 1·0 g carbohydrate/kg body weight, with an amylose content of 0, 270, 600 or 850 g/kg total starch. The area under the glucose curve did not differ under any condition investigated. For the uncooked-starch diets, area under the insulin curve was higher for the 0 g amylose/kg total starch meal than all other meals (P=0·0001). For the cooked-starch diets, area under the insulin curve was higher in the 0 than the 600 and 850 g amylose/kg total starch groups (P<0·01), but did not differ from the 270 amylose/kg total starch group. These results suggest that even a relatively small proportion of uncooked amylose (270 g/kg total starch) is sufficient to achieve a maximal attenuating effect on postprandial insulin concentrations as compared with 0 g amylose/kg total starch. Following cooking, however, a much higher proportion of amylose (>=600 g/kg total starch) is needed to achieve a similar effect.
  • Keywords
    Amylose , cooking , insulin , Amylopectin
  • Journal title
    BRITISH JOURNAL OF NUTRITION
  • Serial Year
    2003
  • Journal title
    BRITISH JOURNAL OF NUTRITION
  • Record number

    89484