Title of article :
Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers
Original Research Article
Author/Authors :
Andrey A. Dobrynin، نويسنده , , Leonid S. Mel’nikov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
The Wiener number, W(G)W(G), is the sum of the distances of all pairs of vertices in a graph GG. Infinite families of graphs with increasing cyclomatic number and the property W(G)=W(L(G))W(G)=W(L(G)) are presented, where L(G)L(G) denotes the line graph of GG. This gives a positive (partial) answer to an open question posed in an earlier paper by Gutman, Jovašević, and Dobrynin.
Keywords :
Distance in graphs , Graph invariant , Line graph , Cyclomatic number , Wiener index
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters