Title of article :
Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals
Author/Authors :
Tomonari Suzuki، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
13
From page :
227
To page :
239
Abstract :
In this paper, we prove Krasnoselskii and Mann’s type convergence theorems for nonexpansive semigroups without using Bochner integral and without assuming the strict convexity of Banach spaces. One of our main results is the following: let C be a compact convex subset of a Banach space E and let {T (t): t 0} be a one-parameter strongly continuous semigroup of nonexpansive mappings on C. Let {tn} be a sequence in [0,∞) satisfying lim inf n→∞ tn < lim sup n→∞ tn and lim n→∞(tn+1 − tn) = 0. Let λ ∈ (0, 1). Define a sequence {xn} in C by x1 ∈ C and xn+1 = λT (tn)xn +(1−λ)xn for n ∈ N. Then {xn} converges strongly to a common fixed point of {T (t): t 0}.  2004 Elsevier Inc. All rights reserved.
Keywords :
One-parameter nonexpansive semigroup , Common fixed point , Convergence theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933812
Link To Document :
بازگشت