Title of article :
Harnack’s inequality for a nonlinear eigenvalue problem on metric spaces
Author/Authors :
Visa Latvala، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
18
From page :
793
To page :
810
Abstract :
We prove Harnack’s inequality for first eigenfunctions of the p-Laplacian in metric measure spaces. The proof is based on the famous Moser iteration method, which has the advantage that it only requires a weak (1,p)-Poincaré inequality. As a by-product we obtain the continuity and the fact that first eigenfunctions do not change signs in bounded domains. © 2005 Elsevier Inc. All rights reserved
Keywords :
First eigenfunction , Harnack’s inequality , Metricspace , Nonlinear eigenvalue problem , Newtonian space , Poincaré inequality , Rayleigh quotient , Caccioppoli estimate , First eigenvalue , doubling measure , Sobolev space , Superminimizer , Minimizer
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934753
Link To Document :
بازگشت