Title of article :
Minimizing algebraic connectivity over connected graphs with fixed girth Original Research Article
Author/Authors :
Shaun M. Fallat، نويسنده , , Steve Kirkland، نويسنده , , Sukanta Pati، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
28
From page :
115
To page :
142
Abstract :
Let Gn,g denote the class of all connected graphs on n vertices with fixed girth g. We prove that if n⩾3g−1, then the graph which uniquely minimizes the algebraic connectivity over Gn,g is the unicyclic “lollipop” graph Cn,g obtained by appending a g cycle to a pendant vertex of a path on n−g vertices. The characteristic set of Cn,g is also discussed. Throughout both algebraic and combinatorial techniques are used.
Keywords :
Laplacian matrix , Algebraic connectivity , Girth , Unicyclic graph , Perron value , Characteristic set
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
950146
Link To Document :
بازگشت