Title of article
Extremal properties of ray-nonsingular matrices Original Research Article
Author/Authors
G.Y. Lee، نويسنده , , J.J. McDonald، نويسنده , , B.L. Shader، نويسنده , , M.J. Tsatsomeros، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
13
From page
221
To page
233
Abstract
A ray-nonsingular matrix is a square complex matrix, A, such that each complex matrix whose entries have the same arguments as the corresponding entries of A, is nonsingular. Extremal properties of ray-nonsingular matrices are studied in this paper. Combinatorial and probabilistic arguments are used to prove that if the order of a ray-nonsingular matrix is at least 6, then it must contain a zero entry, and that if each of its rows and columns have an equal number, k, of nonzeros, then k⩽13.
Keywords
Ray-nonsingular , Full ray-pattern , Balanced vector , Determinant
Journal title
Discrete Mathematics
Serial Year
2000
Journal title
Discrete Mathematics
Record number
950401
Link To Document