Abstract :
In this paper, the results obtained by inter-comparing several statistical techniques for modelling SO2 concentration at a point
such as neural networks, fuzzy logic, generalised additive techniques and other recently proposed statistical approaches are reported.
The results of the inter-comparison are the fruits of collaboration between some of the partners of the APPETISE project
funded under the Framework V Information Societies and Technologies (IST) programme. Two different cases for study were
selected: the Siracusa industrial area, in Italy, where the pollution is dominated by industrial emissions and the Belfast urban
area, in the UK, where domesticheating makes an important contribution. The different kinds of pollution (industrial/
urban) and different locations of the areas considered make the results more general and interesting. In order to make the intercomparison
more objective, all the modellers considered the same datasets. Missing data in the original time series was filled by
using appropriate techniques. The inter-comparison work was carried out on a rigorous basis according to the performance indices
recommended by the European Topic Centre on Air and Climate Change (ETC/ACC). The targets for the implemented prediction
models were defined according to the EC normative relating to limit values for sulphur dioxide. According to this
normative, three different kinds of targets were considered namely daily mean values, daily maximum values and hourly mean
values. The inter-compared models were tested on real cases of poor air quality. In the paper, the inter-compared techniques are
ranked in terms of their capability to predict critical episodes. A ranking in terms of their predictability of the three different targets
considered is also proposed. Several key issues are illustrated and discussed such as the role of input variable selection, the
use of meteorological data, and the use of interpolated time series. Moreover, a novel approach referred to as the technique of
balancing the training pattern set, which was successfully applied to improve the capability of ANN models to predict exceedences
is introduced. The results show that there is no single modelling approach, which generates optimum results in terms of
the full range of performance indices considered. In view of the implementation of a warning system for air quality control,
approaches that are able to work better in the prediction of critical episodes must be preferred. Therefore, the artificial neural network
prediction models can be recommended for this purpose. The best forecasts were achieved for daily averages of SO2 while
daily maximum and hourly mean values are difficult to predict with acceptable accuracy.
Keywords :
Phase-space model , Generalised additive models , air pollution , Neural models , Neuro-fuzzy model , Linear model