• Title of article

    Arsenic re-mobilization in water treatment adsorbents under reducing conditions: Part II. XAS and modeling study

  • Author/Authors

    Suqin Liua، نويسنده , , Chuanyong Jinga، نويسنده , , b، نويسنده , , ?، نويسنده , , Xiaoguang Menga، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    8
  • From page
    137
  • To page
    144
  • Abstract
    The mechanism of arsenic re-mobilization in spent adsorbents under reducing conditions was studied using X-ray absorption spectroscopy and surface complexation model calculations. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that As(V) was partially reduced to As(III) in spent granular ferric hydroxide (GFH), titanium dioxide (TiO2), activated alumina (AA) and modified activated alumina (MAA) adsorbents after 2 years of anaerobic incubation. As(V) was completely reduced to As(III) in spent granular ferric oxide (GFO) under 2-year incubation. The extended X-ray absorption fine structure (EXAFS) spectroscopy analysis showed that As(III) formed bidentate binuclear surface complexes on GFO as evidenced by an average As(III)–O bond distance of 1.78 Å and As(III)–Fe distance of 3.34 Å. The release of As from the spent GFO and TiO2 was simulated using the charge distribution multi-site complexation (CD-MUSIC) model. The observed redox ranges for As release and sulfate mobility were described by model calculations.
  • Keywords
    ArsenicRe-mobilizationXANESEXAFSCD-MUSIC model
  • Journal title
    Science of the Total Environment
  • Serial Year
    2008
  • Journal title
    Science of the Total Environment
  • Record number

    986294