چكيده لاتين :
Seismic resisting structures are expected to maintain adequate stiffness during frequent but moderate excitations on one hand, and to dissipate a large amount of energy under damaging earthquakes on the other hand. In this paper, a relatively new seismic resisting structural system, which satisfies stiffness and energy dissipation requirements simultaneously, is numerically investigated using nonlinear finite element analysis procedure. In this system, earthquake energy is dissipated through large inelastic deformation occurred within a shear panel. The shear panel acts as a ductile link beam connecting braces to the floor beam. This paper aims to find out key issues influencing cyclic behaviour of frames braced by Shear Panel System (SPS), like Cross-sectional properties of SPS and link length. The results indicate that shear panel length significantly affects cyclic performance of this system. Use of shorter links results in more stiffuess and at the same time more stable hysteretic behaviour and energy dissipation capacity. Finally, the paper presents a mathematical model to evaluate lateral stiffness of braced frames braced having SPS