عنوان مقاله :
تاثير زمرة ضبابية على مجموعة ضبابية
پديد آورندگان :
الملاح, رشا جامعة دمشق - كلية العلوم - قسم الرياضيات, سوريا , هنانو, عبد اللطيف جامعة دمشق - كلية العلوم - قسم الرياضيات, سوريا
چكيده عربي :
According to the concept of fuzzy group and resistant mapping, we define
fuzzy set called sym(A) (where A is a fuzzy set) then we prove that sym(A)
is a fuzzy group with respect to the operation (.) which defined as follows :
f , gÎsym(A) : f.g : A® A
1
x a f.g(x) = f (g(x))
and we define act of fuzzy group G over fuzzy set S in two different ways
then we prove that they are equivalent in the following theorem:
Let G be a fuzzy group and let S be a fuzzy set then there is a resistant
mapping:
j : G ´ S ® S
(g,s) a j(g,s) = g * s
satisfy the following conditions:
e s s 1) G
* =
2) (g.g¢) * s = g * (g¢ * s)
3) (g s) (s) mS ³ mS
*
if and only if there is a resistant group homomorphism :
q : G ® sym(S)
g g a q(g) = f
satisfy the condition :
( ( )) ( ( ))
چكيده لاتين :
According to the concept of fuzzy group and resistant mapping, we define
fuzzy set called sym(A) (where A is a fuzzy set) then we prove that sym(A)
is a fuzzy group with respect to the operation (.) which defined as follows :
f , gÎsym(A) : f.g : A® A
1
x a f.g(x) = f (g(x))
and we define act of fuzzy group G over fuzzy set S in two different ways
then we prove that they are equivalent in the following theorem:
Let G be a fuzzy group and let S be a fuzzy set then there is a resistant
mapping:
j : G ´ S ® S
(g,s) a j(g,s) = g * s
satisfy the following conditions:
e s s 1) G
* =
2) (g.g¢) * s = g * (g¢ * s)
3) (g s) (s) mS ³ mS
*
if and only if there is a resistant group homomorphism :
q : G ® sym(S)
g g a q(g) = f
satisfy the condition :
( ( )) ( ( ))
كليدواژه :
لا كلمات رئيسية
عنوان نشريه :
مجله جامعه دمشق للعلوم الاساسيه