شماره ركورد :
47932
عنوان مقاله :
تاثير زمرة ضبابية على مجموعة ضبابية
پديد آورندگان :
الملاح, رشا جامعة دمشق - كلية العلوم - قسم الرياضيات, سوريا , هنانو, عبد اللطيف جامعة دمشق - كلية العلوم - قسم الرياضيات, سوريا
از صفحه :
101
تا صفحه :
112
تعداد صفحه :
12
چكيده عربي :
According to the concept of fuzzy group and resistant mapping, we define fuzzy set called sym(A) (where A is a fuzzy set) then we prove that sym(A) is a fuzzy group with respect to the operation (.) which defined as follows : f , gÎsym(A) : f.g : A® A 1 x a f.g(x) = f (g(x)) an‎d we define act of fuzzy group G over fuzzy set S in two different ways then we prove that they are equivalent in the following theorem: Let G be a fuzzy group and let S be a fuzzy set then there is a resistant mapping: j : G ´ S ® S (g,s) a j(g,s) = g * s satisfy the following conditions: e s s 1) G * = 2) (g.g¢) * s = g * (g¢ * s) 3) (g s) (s) mS ³ mS * if and only if there is a resistant group homomorphism : q : G ® sym(S) g g a q(g) = f satisfy the condition : ( ( )) ( ( ))
چكيده لاتين :
According to the concept of fuzzy group and resistant mapping, we define fuzzy set called sym(A) (where A is a fuzzy set) then we prove that sym(A) is a fuzzy group with respect to the operation (.) which defined as follows : f , gÎsym(A) : f.g : A® A 1 x a f.g(x) = f (g(x)) an‎d we define act of fuzzy group G over fuzzy set S in two different ways then we prove that they are equivalent in the following theorem: Let G be a fuzzy group and let S be a fuzzy set then there is a resistant mapping: j : G ´ S ® S (g,s) a j(g,s) = g * s satisfy the following conditions: e s s 1) G * = 2) (g.g¢) * s = g * (g¢ * s) 3) (g s) (s) mS ³ mS * if and only if there is a resistant group homomorphism : q : G ® sym(S) g g a q(g) = f satisfy the condition : ( ( )) ( ( ))
كليدواژه :
لا كلمات رئيسية
سال انتشار :
2012
عنوان نشريه :
مجله جامعه دمشق للعلوم الاساسيه
لينک به اين مدرک :
بازگشت