شماره ركورد كنفرانس :
144
عنوان مقاله :
Comparing Different Versions of Differential Evolution for Training Fuzzy Wavelet Neural Network
پديدآورندگان :
Bazoobandi Hojjat Allah نويسنده , Eftekhari Mahdi نويسنده
كليدواژه :
training , Nonparametric statistical test , differential evolution , Fuzzy Wavelet Neural Network
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
چكيده فارسي :
Some derivative free methods have been introduced
for training Fuzzy Wavelet Neural Network (FWNN). Among
them, Evolutionary Algorithms (EA) are more attractive because
of their training ability. In this paper, we review eight basic
different versions of Differential Evolution (DE) and then
compare their power in FWNN training using a nonparametric
statistical test. We choose DE among EAs because of its lower
computation and better solutions. Approximation of a piecewise
function, time series prediction, and two problems about
identification of dynamic plants are used as benchmarks in
simulation results.
شماره مدرك كنفرانس :
3817034