شماره ركورد كنفرانس :
2690
عنوان مقاله :
Improving Speech Identification with MFCC and SVM
پديدآورندگان :
vandaki saeed نويسنده , Zahiri Rad Saman نويسنده 1Department of Electrical Engineering, Islamic Azad University, Gonabad branch, Iran. , mehrshad naser نويسنده
تعداد صفحه :
8
كليدواژه :
Mel-frequency cepstral coefficients , Support Vector Machines(SVMs) , (MFCC)
عنوان كنفرانس :
مجموعه مقالات دومين كنفرانس توسعه كاربردهاي صنعتي اطلاعات ارتباطات و محاسبا ت
زبان مدرك :
فارسی
چكيده فارسي :
In any language, Spoken alphabet identification as one of the subsets ofspeech identificationand pattern identification has many applications. However, it is not easy to recognize the alphabet. Similar sound that is difficult to detect. One of the problems set is called the E-set that include words letters B, C, D, E, G, P, T, V and Z. This paper describes an approach of speech identification by using the Mel-Scale Frequency Cepstral Coefficients (MFCC) extracted from speech signal of spoken words. The Support Vector Machine (SVM) is used as classifier. In this paper, a method is said to have achieved %08 accuracy on data-set TI ALPHA.
شماره مدرك كنفرانس :
3365932
سال انتشار :
1393
از صفحه :
1
تا صفحه :
8
سال انتشار :
0
لينک به اين مدرک :
بازگشت