شماره ركورد كنفرانس :
3360
عنوان مقاله :
N-SUPERCYCLICITY OF AN (m; p)-ISOMETRY PLUS A NILPOTENT OPERATOR
Author/Authors :
MASOUMEH FAGHIH-AHMADI Department of Mathematics - College of Sciences, Shiraz University , SAEED YARMAHMOODI Department of Mathematics - Science and Research Branch Islamic Azad University, Fars , KARIM HEDAYATIAN Department of Mathematics - College of Sciences, Shiraz University
كليدواژه :
m; p)-isometries) , nilpotent operators , supercyclicity
سال انتشار :
اسفند 1394
عنوان كنفرانس :
چهارمين سمينار آناليز تابعي و كاربردهاي آن
زبان مدرك :
انگليسي
چكيده لاتين :
A bounded linear operator T on a Hilbert space H is N-supercyclic, if there is a subspace E of dimension N such that its orbit under T is dense in H. Also, T is an (m; p)-isometry if mΣ k=0 (1)k ( m k ) jjTkxjjp = 0 for all x 2 H, in which p 2 [1;1] and m 1. We show that the sum of an (m; p)-isometry and a nilpotent operator that commute with each other is not N- supercyclic for any positive integer N, and every rational number p
كشور :
ايران
تعداد صفحه 2 :
4
از صفحه :
69
تا صفحه :
72
لينک به اين مدرک :
بازگشت