• شماره ركورد كنفرانس
    2527
  • عنوان مقاله

    Combination of contextual information and optimal texture features for improving the accuracy of SAR image classification

  • پديدآورندگان

    Omati Mehrnoosh نويسنده Faculty of Geodesy and Geomatics Engineering, K.N Toosi University of Technology , Sahebi Mahmod Reza نويسنده Faculty of Geodesy and Geomatics Engineering, K.N Toosi University of Technology

  • تعداد صفحه
    5
  • كليدواژه
    Synthetic aperture radar (SAR) , Markov random field (MRF) , Texture features , Support vector machine (SVM)
  • سال انتشار
    1395
  • عنوان كنفرانس
    دومين كنفرانس ملي مهندسي فناوري اطلاعات مكاني
  • زبان مدرك
    فارسی
  • چكيده لاتين
    This paper employs the full advantages of contextual information and optimal texture features for improving the accuracy of pixel-based classification. In the proposed novel classification method, first, optimal texture features are selected based on the genetic algorithm (GA) and Jeffries-Matusita (JM) distance criterion. Second, the selected texture features are combined with backscattering SAR data, and a support vector machine (SVM) pixel-based classification is done. Finally, integration of Gaussian Markov random field (MRF) model with SVM classifier obtains final classification map. Comparison of the proposed method with pixel-based classification shows a 13.77% improvement in overall classification accuracy of TerraSAR-X images
  • شماره مدرك كنفرانس
    4411740
  • سال انتشار
    1395
  • از صفحه
    1
  • تا صفحه
    5
  • سال انتشار
    1395