شماره ركورد كنفرانس
2527
عنوان مقاله
Combination of contextual information and optimal texture features for improving the accuracy of SAR image classification
پديدآورندگان
Omati Mehrnoosh نويسنده Faculty of Geodesy and Geomatics Engineering, K.N Toosi University of Technology , Sahebi Mahmod Reza نويسنده Faculty of Geodesy and Geomatics Engineering, K.N Toosi University of Technology
تعداد صفحه
5
كليدواژه
Synthetic aperture radar (SAR) , Markov random field (MRF) , Texture features , Support vector machine (SVM)
سال انتشار
1395
عنوان كنفرانس
دومين كنفرانس ملي مهندسي فناوري اطلاعات مكاني
زبان مدرك
فارسی
چكيده لاتين
This paper employs the full advantages of contextual information and optimal texture features for improving the accuracy of pixel-based classification. In the proposed novel classification method, first, optimal texture features are selected based on the genetic algorithm (GA) and Jeffries-Matusita (JM) distance criterion. Second, the selected texture features are combined with backscattering SAR data, and a support vector machine (SVM) pixel-based classification is done. Finally, integration of Gaussian Markov random field (MRF) model with SVM classifier obtains final classification map. Comparison of the proposed method with pixel-based classification shows a 13.77% improvement in overall classification accuracy of TerraSAR-X images
شماره مدرك كنفرانس
4411740
سال انتشار
1395
از صفحه
1
تا صفحه
5
سال انتشار
1395
لينک به اين مدرک