شماره ركورد كنفرانس :
4001
عنوان مقاله :
PROVIDING THE FIRE RISK MAP IN FOREST AREA USING A GEOGRAPHICALLY WEIGHTED REGRESSION MODEL WITH GAUSSIN KERNEL AND MODIS IMAGES, A CASE STUDY: GOLESTAN PROVINCE
پديدآورندگان :
Shah-Heydari pour Ali Shahheydary1372@ut.ac.ir University of Tehran , Pahlavani Parham pahlavani@ut.ac.ir University of Tehran , Bigdeli Behnaz bigdeli@ut.ac.ir University of Tehran
تعداد صفحه :
5
كليدواژه :
Forest Fire , Geographically Weighted Regression , Fire Risk Map , Golestan Forest , Gaussian kernel
سال انتشار :
1396
عنوان كنفرانس :
دومين همايش بين المللي پژوهش هاي اطلاعات مكاني و چهارمين همايش بين المللي سنجنده ها و مدل ها در فتوگرامتري و سنجش از دور و ششمين همايش بين المللي مشاهدات زميني در تغييرات محيطي
زبان مدرك :
انگليسي
چكيده فارسي :
According to the industrialization of cities and the apparent increase in pollutants and greenhouse gases, the importance of forests as the natural lungs of the earth is felt more than ever to clean these pollutants. Annually, a large part of the forests is destroyed due to the lack of timely action during the fire. Knowledge about areas with a high-risk of fire and equipping these areas by constructing access routes and allocating the fire-fighting equipment can help to eliminate the destruction of the forest. In this research, the fire risk of region was forecasted and the risk map of that was provided using MODIS images by applying geographically weighted regression model with Gaussian kernel and ordinary least squares over the effective parameters in forest fire including distance from residential areas, distance from the river, distance from the road, height, slope, aspect, soil type, land use, average temperature, wind speed, and rainfall. After the evaluation, it was found that the geographically weighted regression model with Gaussian kernel forecasted 93.4% of the all fire points properly, however the ordinary least squares method could forecast properly only 66% of the fire points.
كشور :
ايران
لينک به اين مدرک :
بازگشت