شماره ركورد كنفرانس :
4079
عنوان مقاله :
Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
پديدآورندگان :
Alimohammadi D. d-alimohammdi@araku.ac.ir Arak University , Mayghani M. m_maighany@yahoo.com Payame Noor University, Tehran
كليدواژه :
Essential spectral radius , Lipschitz algebra , quasicompact endomorphism , Riesz endomorphism
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
چكيده فارسي :
We first show that every unital endomorphism of real Lipschitz algebras of complex-valued
functions on compact metric spaces with Lipschitz involutions is a composition operator. Next,
we establish a formula for essential spectral radius of a unital endomorphism T of these algebras
under a condition which is equivalent to the quasicompactness of the endomorphism T. We also
conclude a necessary and sufficient condition for a unital endomorphism of these algebras to be
.Riesz