• شماره ركورد كنفرانس
    4079
  • عنوان مقاله

    On 2-primal differential polynomial rings

  • پديدآورندگان

    Moussaviy .A moussavi.a@modares.ac.ir Tarbiat Modares University , Azimi .M Azimidr45@Gmail.com Tarbiat Modares University

  • تعداد صفحه
    4
  • كليدواژه
    Ore extensions , 2 , primal rings , nil , (α , δ) , compatible rings
  • سال انتشار
    1395
  • عنوان كنفرانس
    چهل و هفتمين كنفرانس رياضي ايران
  • زبان مدرك
    انگليسي
  • چكيده فارسي
    Let R be a ring with a derivation δ. In this note we show that if R is a nil-δ-compatible ring, then R is 2-primal if and only if the differential polynomial ring R[x; δ] is 2-primal if and only if Nil(R) = Nil∗(R; δ) if and only if Nil∗(R[x; δ]) = Ni(R)[x; δ] if and only if every minimal δ-prime ideal of R is completely prime. The class of nil δ-compatible rings contains properly reduced rings and δ-compatible rings, and contrary to the notion of δ-compatible 2-primal rings, nil-δ-compatible 2-primal rings extend to polynomial rings, triangular matrix rings and various ring extensions
  • كشور
    ايران