شماره ركورد كنفرانس :
4371
عنوان مقاله :
?Which group theoretic properties of a permutation group are inherited by its closure
پديدآورندگان :
Arezoomand .M arezoomand@lar.ac.ir University of Larestan , Abdollahi .A a.abdollahi@math.ui.ac.ir University of Isfahan
كليدواژه :
k , closure , nilpotent group
عنوان كنفرانس :
دهمين كنفرانس ملي نظريه گروه هاي ايران
چكيده فارسي :
Given a permutation group $G$ on a finite set $\Omega$, for $k\geq 2$, the $k$-closure $G^{(k)}$ of $G$ is the largest subgroup of $\Sym(\Omega)$ with the same orbits as $G$ on the set $\Omega^k$ of $k$-tuples from $\Omega$. Then $G\leq\ldots\leq G^{(k)}\leq G^{(k-1)}\leq\ldots\leq G^{(2)}$. In this paper, we review some basic properties of $k$-closures of permutation groups and report some group theoretic properties of a permutation group which are inherited by its closures. We prove that
G$ is abelian of exponent $e$ if and only if $G^{(2)}$ is abelian of exponent $e$$
G$ is a $p$-group, $p$ a prime, if and only if $G^{(2)}$ is a $p$-group$
G$ is nilpotent if and only if $G^{(2)}$ is nilpotent$