شماره ركورد كنفرانس :
3540
عنوان مقاله :
Threshold-Based Hidden Markov Model for Detecting Anomalies in SAX-Represented ECG
Author/Authors :
Milad Zandi-Goharrizy Information Processing and Knowledge Discovery Laboratory (IPKD Lab) - Electrical & Computer Engineering Dept. - Yazd University, Yazd, Iran , Mohammad-Reza Zare-Mirakabad Information Processing and Knowledge Discovery Laboratory (IPKD Lab) - Electrical & Computer Engineering Dept. - Yazd University, Yazd, Iran , Fatemeh Kaveh-Yazdy Information Processing and Knowledge Discovery Laboratory (IPKD Lab) - Electrical & Computer Engineering Dept. - Yazd University, Yazd, Iran
كليدواژه :
SAX representation , ECG Data , Anomaly Detection system , Hidden Markov Models
سال انتشار :
1392
عنوان كنفرانس :
همايش بين المللي هوش مصنوعي و پردازش سيگنال
زبان مدرك :
لاتين
چكيده لاتين :
In this paper, we propose a HMM based novel anomaly detection framework, which uses SAX-represented ECGs. According to experiments, typical HMM and SAX are not good candidates for anomaly detection, because of low resolution of SAX. However, we contribute a threshold-based hidden Markov model which compensates for the SAX low-resolution problem. Furthermore, our proposed threshold reduces the dependency of the model to the distribution of hidden state by taking into account the likelihood probability of anomalous patterns. Results of experiments demonstrate that the typical HMM labels samples with the accuracy of 50% and our proposed model labels same data with the accuracy of 99%.
كشور :
ايران
تعداد صفحه 2 :
10
از صفحه :
1
تا صفحه :
10
لينک به اين مدرک :
بازگشت