شماره ركورد كنفرانس :
3237
عنوان مقاله :
Node Classification in Graph Data using Augmented Random Walk
Author/Authors :
Hossein Rahmani Department of Knowledge Engineering (DKE) - Maastricht University , Gerhard Weiss Department of Knowledge Engineering (DKE) - Maastricht University
كليدواژه :
Random Walk , Graph Augmentation , Majority Rule , Terms — Node Classification
سال انتشار :
فروردين 94
عنوان كنفرانس :
كنفرانس بين المللي وب پژوهي
زبان مدرك :
انگليسي
چكيده لاتين :
Node classification in graph data plays an important role in web mining applications. We classify the existing node classifiers into Inductive and Transductive approaches. Among the Transductive methods, the Majority Rule method (MRM) has a prominent role. This method considers only the class labels of the neighboring nodes, neglecting the informative connectivity information in the graph data. In this paper, we propose an Augmented Random Walk (ARW) based approach to resolve main limitations of MRM. In our proposed method, first, we augment the initial graph by adding class labels as new nodes to the graph and then we connect each classified node to its corresponding class label nodes. Second, we apply a Random Walk algorithm to find the similarity score of each un-classified node to different class labels. Third, we predict class labels with the highest scores for the un-classified node. Empirical results show that our proposed method clearly outperforms the Majority Rule method in six graph datasets with high homophily.
كشور :
ايران
تعداد صفحه 2 :
4
از صفحه :
1
تا صفحه :
4
لينک به اين مدرک :
بازگشت