شماره ركورد كنفرانس :
3503
عنوان مقاله :
Rings and Modules with Divisibility on Chains
Author/Authors :
R. Dastanpour Isfahan University of Technology , A. Ghorbani Isfahan University of Technology
كليدواژه :
chain conditions , semiperfect rings , semilocal rings , divisibility on chains
سال انتشار :
شهريور 1395
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده لاتين :
An R-moduleM is defined to satisfy ACCd (resp. DCCd) on submodules if for every ascending (resp. descending) chain {Mi} of submodules of M, Mi = φi(Mi+1) (resp. Mi+1 = φi(Mi)) for some φi ∈ EndR(M) for i ≫ 0. We show that every nonzero submodule of an R-module with ACCd (resp. DCCd) on submodules contains a uniform submodule. As a consequence, a regular ring with ACCd (resp. DCCd) on right ideals has essential right socle. We also show that the endomorphism ring of a finitely generated self-projective module with ACCd (resp. DCCd) on submodules satisfy ACCd (resp. DCCd) on right ideals. Finally, any right self-injective ring with ACCd (resp. DCCd) on right ideals has finite right uniform dimension.
كشور :
ايران
تعداد صفحه 2 :
5
از صفحه :
1
تا صفحه :
5
لينک به اين مدرک :
بازگشت