شماره ركورد كنفرانس :
4781
عنوان مقاله :
Fuzzy linear regression model with crisp coefficients: A dynamic optimization scheme
پديدآورندگان :
Nazemi Alireza Department of Mathematics, Shahrood University of Technology , Karbasi Delara Department of Mathematics, Shahrood University of Technology
تعداد صفحه :
4
كليدواژه :
Fuzzy regression model , fuzzy number , recurrent neural network , learning algorithm , stability , convergence.
سال انتشار :
1397
عنوان كنفرانس :
يازدهمين كنفرانس بين المللي انجمن ايراني تحقيق در عمليات
زبان مدرك :
انگليسي
چكيده فارسي :
The fuzzy linear regression model with fuzzy input-output data and crisp coefficients is studied in this paper. a hybrid scheme based on recurrent neural networks is proposed to calculate the regression coefficients. Here a neural network is first constructed based on some concepts of convex optimization and stability theory. The presented neural network framework guarantees to obtain to find the approximate parameters of the fuzzy regression problem. The existence and convergence of the trajectories of the neural network are studied. The Lyapunov stability for the neural network is also shown. Some illustrative examples provide a further demonstration of the effectiveness of the method.
كشور :
ايران
لينک به اين مدرک :
بازگشت