شماره ركورد كنفرانس :
5418
عنوان مقاله :
Private Federated Learning: An Adversarial Sanitizing Perspective
پديدآورندگان :
Shirinjani Mojtaba mojtaba.shirinjani@ee.sharif.edu Sharif University of Technology , Ahmadi Siavash s.ahmadi@sharif.edu Sharif University of Technology , Eghlidos Taraneh teghlidos@sharif.edu Sharif University of Technology , Aref Mohammad Reza aref@sharif.edu Sharif University of Technology
تعداد صفحه :
6
كليدواژه :
Byzantine , resilience#differential privacy#federated learning#homomorphic encryption#
سال انتشار :
1402
عنوان كنفرانس :
بيستمين كنفرانس بين المللي انجمن رمز ايران در امنيت اطلاعات و رمزشناسي
زبان مدرك :
انگليسي
چكيده فارسي :
Large-scale data collection is challenging in alterna tive centralized learning as privacy concerns or prohibitive poli cies may rise. As a solution, Federated Learning (FL) is proposed wherein data owners, called participants, can train a common model collaboratively while their privacy is preserved. However, recent attacks, namely Membership Inference Attacks (MIA) or Poisoning Attacks (PA), can threaten the privacy and performance in FL systems. This paper develops an innovative Adversarial-Re silient Privacy-preserving Scheme (ARPS) for FL to cope with preceding threats using differential privacy and cryptography. Our experiments display that ARPS can establish a private model with high accuracy outperforming state-of-the-art approaches. To the best of our knowledge, this work is the only scheme providing privacy protection beyond any output models in conjunction with Byzantine resiliency without sacrificing accuracy and efficiency.
كشور :
ايران
لينک به اين مدرک :
بازگشت