شماره ركورد كنفرانس :
5432
عنوان مقاله :
A dual-based Distributed Optimization Method on Time-Varying Networks
پديدآورندگان :
Monifi Elham elham.monifi@sharif.edu Faculty of Mathematical Sciences, Sharif University of Technology Tehran, Iran , Mahdavi-Amiri Nezam nezamm@sharif.edu Faculty of Mathematical Sciences, Sharif University of Technology Tehran, Iran
تعداد صفحه :
6
كليدواژه :
Distributed Learning , Distributed Optimization , Time , Varying Networks
سال انتشار :
1402
عنوان كنفرانس :
شانزدهمين كنفرانس بين المللي انجمن ايراني تحقيق در عمليات
زبان مدرك :
انگليسي
چكيده فارسي :
We propose a time-varying dual accelerated gradient method for minimizing the average of n strongly convex and smooth functions over a time-varying network with n nodes. We prove that the time-varying dual accelerated gradient ascent method converges at a linear rate with the time to reach an ε-neighborhood of the solution being of O(ln 1/ϵ). We test the proposed method on two classes of problems: L_2-regularized least squares and logistic classification problems. For each class, we generate 1000 problems and use the Dolan-Moré performance profiles to compare our obtained results with the ones obtained by several state-of-the-art algorithms to illustrate the efficiency of our method.
كشور :
ايران
لينک به اين مدرک :
بازگشت