شماره ركورد كنفرانس :
5440
عنوان مقاله :
$phi$-primary subsemimodules
پديدآورندگان :
FATAHI F. Department of mathematics, Bouali Sina University, Hamedan, P. O. Box 65178-38695, Iran , SAFAKISH R. Department of mathematics, Bu-Ali Sina university, Hamedan, P. O. Box 65178-38695, Iran.
كليدواژه :
Semiring , Semimodule , $phi$ , primary subsemimodule , $M$ , subtractive subsemimodule
عنوان كنفرانس :
بيست و هفتمين سمينار جبر ايران
چكيده فارسي :
Let $R$ be a commutative semiring with identity and $M$ be a unitary $R$-semimodule. ##Let $phi:mathcal{S}(M)rightarrow mathcal{S}(M)cup{emptyset}$ be a function, where $mathcal{S}(M)$ is the set of all subsemimodules of $M$. ##A proper subsemimodule $N$ of $M$ is called $phi$-primary subsemimodule, if whenever $rin R$ and $xin M$ with $rxin N-phi(N)$, implies that $rin sqrt{(N:_R M)}$ or $xin N$. So if we take $phi(N)=emptyset$ (resp., $phi(N)={0}$), a $phi$-primary subsemimodule is primary (resp., weakly primary). In this paper, we study the concept of $phi$-primary subsemimodule which is a generalization of $phi$-prime subsemimodule in a commutative semiring