شماره ركورد كنفرانس :
5440
عنوان مقاله :
Distance spectral of the unitary Cayley graphs of commutative rings
پديدآورندگان :
BARATI Z. za.barati87@gmail.com Faculty of Sciences, Kosar University of Bojnord , AFKHAMI M. mojgan.afkhami@yahoo.com Faculty of Sciences, University of Neyshabur,
كليدواژه :
Cayley graph , Distance spectrum , Distance Laplacian spectrum , Distance signless Laplacian spectrum.
عنوان كنفرانس :
بيست و هفتمين سمينار جبر ايران
چكيده فارسي :
Let $R$ be a commutative ring with unity $1neq 0$ and let $R^{times}$ be the set of all unit elements of $R$. ## The unitary Cayley graph of $R$, denoted by $G_R=text{Cay}(R,R^{times})$, is a simple graph whose vertex set is $R$ and there is an edge between two distinct vertices $x$ and $y$ if and only if $x-y in R^{times}$. ##This paper involves determining the distance, distance Laplacian and distance signless Laplacian spectrum of the unitary Cayley graphs with diameter at most $2$.