شماره ركورد كنفرانس :
5440
عنوان مقاله :
Cubic edge-transitive graphs of order 40p
پديدآورندگان :
REZAEE J. jre927@gmail.com Faculty of Mathematical and umputer Science, Kharazmi University of Iran,Tehran , SALARIAN R. Faculty of Mathematical and umputer Science, Kharazmi University of Iran,Tehran
كليدواژه :
semisymmetric graph , edge , transitive graph , vertex , transitive graph
عنوان كنفرانس :
بيست و هفتمين سمينار جبر ايران
چكيده فارسي :
A simple graph is called semisymmetric if it is regular and edge-transitive but not vertex-transitive. ##Let p be a prime. Folkman in [1] proved that a regular edge-transitive graph of order 2p or 2p^2, necessarily vertex-transitive. ##We prove that if Γ is a connected cubic edge-transitive graph of order 40p, p a prime, then either is semisymmetric for, p = 3 and Γ is isomorphic to the cubic semisymmetric graph of order 120 in [2] or p = 31 and Γ is isomorphic to C(L2(31); S4, S4). and for p is opposite to 3 and 31 1ts vertex-transitive.