شماره ركورد كنفرانس :
144
عنوان مقاله :
A Cortex-like Model For Animal Recognition Based On Texture Using Feature-Selective Hashing
پديدآورندگان :
Seifzadeh Sahar نويسنده , Faez Karim نويسنده
تعداد صفحه :
4
كليدواژه :
Cortex-like model , animal recognition , feature-selective Hashing , textural fearure extraction
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
Building a model that can mimic the brainʹs cortex has always been a major goal, because the human brain recognizes objects in terms of speed, reliability and flexibility that are always unique pattern for machine vision systems. In this paper, we are inspired by neuroscience and computer science that have designed a framework that can be fast and accurate emulation of the inferior temporal cortex with feature selective hashing to recognize animals. We worked on KTH database containing 1239 images in 13 classes that took photos from animals in wild.
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
4
سال انتشار :
0
لينک به اين مدرک :
بازگشت