• Author/Authors

    Jia Shi، نويسنده , , Furong Gao and Tie-Jun Wu، نويسنده ,

  • DocumentNumber
    1384703
  • Title Of Article

    Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system

  • شماره ركورد
    11343
  • Latin Abstract
    To improve stability and convergence, feedback control is often incorporated with iterative learning control (ILC), resulting in feedback feed-forward ILC (FFILC). In this paper, a general form of FFILC is studied, comprising of two feedback controllers, a state feedback controller and a tracking error compensator, for the robustness and convergence along time direction, and an ILC for performance along the cycle direction. The integrated design of this FFILC scheme is transformed into a robust control problem of an uncertain 2D Roesser system. To describe the stability and convergence quantitatively along the time and the cycle direction, the concepts of robust stability and convergence along the two axes are introduced. A series of algorithms are established for the FFILC design. These algorithms allow the designer to balance and choose optimization objectives to meet the FFILC performance requirements. The applications to injection molding velocity control show the good effectiveness and feasibility of the proposed design methods.
  • From Page
    907
  • NaturalLanguageKeyword
    Injectionmolding , Linear matrix inequality (LMI) , Iterative learning control (ILC) , Tracking error compensator , 2D Roesser system , Robust control , Robust H1 performance
  • JournalTitle
    Studia Iranica
  • To Page
    924
  • To Page
    924