• DocumentCode
    1003285
  • Title

    Maximum set estimators with bounded estimation error

  • Author

    Ben-Haim, Zvika ; Eldar, Yonina C.

  • Author_Institution
    Technion-Israel Inst. of Technol., Haifa, Israel
  • Volume
    53
  • Issue
    8
  • fYear
    2005
  • Firstpage
    3172
  • Lastpage
    3182
  • Abstract
    We consider the linear regression problem of estimating a deterministic parameter vector x from observations y = Hx + w, where H is known, and w is additive noise. We seek an estimator whose estimation error does not exceed a given maximum error for as wide a range of conditions as possible. The maximum error is a design choice and is generally lower than the error provided by the well-known least-squares (LS) estimator. We develop estimators guaranteeing the required error for as large a parameter set as possible and for as large a noise level as possible. We discuss methods for finding these estimators and demonstrate that in many cases, the proposed estimators outperform the LS estimator.
  • Keywords
    AWGN; deterministic algorithms; least mean squares methods; minimax techniques; regression analysis; signal processing; additive noise; bounded estimation error; deterministic parameter estimation; least-squares estimator; linear regression; maximum set estimator; minimax mean squared error; signal processing; Additive noise; Estimation error; Linear regression; Measurement errors; Minimax techniques; Noise level; Parameter estimation; Signal to noise ratio; Statistics; Vectors; Deterministic parameter estimation; linear estimation; minimax mean squared error;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2005.851113
  • Filename
    1468509